Project Name Test Plan

Table of Contents

History of Changes1
Version1
Date
Change1
First Draft1
Related Documents
Test Team
Testing Strategy
Items Not Covered by These Test Cases
Bug Tracking
Quality Control
Adequacy Criterion
Planned Test Cases
Legend

History of Changes

Version	Date	Change
First Draft	10/10/2005	
Second Draft	10/11/2005	Types of testing
Third Draft	10/18/2005	Added Test
Final Draft	11/22/2005	Revised procedure, added tests

Related Documents

Requirements Document: http://swiki.cc.gatech.edu:8080/cs4911b-fl05/143

Test Team

Testing Manager: Dustin Roberts Sound Tester: John Burton Image Tester: Andrew Nagel GUI Tester: Sam Gawthrop

Testing Strategy

Initially, all tests will be written in a black box fashion. The tests will include unit tests from a previous semester's team, and all sample code in "Introduction to Media Computation" by Mark Guzdial. If the software can run all of the sample code in this book, it has met the acceptance criteria. When major bugs are discovered, we will then write specific tests for that function. For these specific tests, we will use white box testing, so that every line of code can be run in those functions.

A major bug is one that takes more than 30 minutes to repair, or that has to employ a work around in order to work with currently available libraries.

In addition to functionality testing, we will also test performance. In order to test performance, we will use the "Time" function in Python to record how long a program takes to run. We will use the sample code from Mark Guzdial's book to get the benchmarks. First, we will run the code on JES and record the times. These tests will be run on both Windows and Mac. We will then run the code using the new Media.py and record those times. These tests will also be run on both Windows and Mac. All results will be shown graphically using a bar chart.

Testing will be done in a "Top-down" fashion. This is inherently true because the examples in the book start out doing very broad tasks, which use large portions of the library, and slowly dwindle down into the specific function.

Dustin Roberts is responsible for writing all of the initial tests. This does not mean that each individual will not write tests; in fact they are required to write a test if they discover a bug, or are unsure if something is running correctly. Dustin Roberts is responsible for getting with each programmer and running tests that pertain to their code. Team members may run the tests on their code alone, but their results are not certified as correct until Dustin Roberts has run all the tests with them. Once all tests have been run once, the programmer will make necessary repairs, and write extra tests for any major bug. The programmer will then contact Dustin Roberts, and they will meet for another test run. This will occur until all tests are passed satisfactory with Dustin Roberts present.

Items Not Covered by These Test Cases

PyGames will not be tested by the test cases. This software is a third party library, that is assumed to have already been tested.

CPython will not be tested because it is the virtual machine, which will run our code, and it is also assumed to have already been tested by its developers.

WxWindows will not be tested by our code either, because it too is a third party library and is assumed to be tested by its developers.

Bug Tracking

An Excel spreadsheet will be used to track bugs. It will contain the following information: description of the bug, person who discovered it, when it was discovered, who is responsible for it, how it was fixed, and when it was fixed. Each teammate is responsible for recording bugs in the Excel spreadsheet when they discover them. Andrew Nagel is responsible for logging all bugs reported by beta testers.

Quality Control

All team members, prior to its submittal, will review the test plan. The advisor will also review the test plan and add anything he thinks would be beneficial to the team.

The customer decided that he would like to test the software on DrPython, since a class in Australia will be using DrPython for their students. This requires us to run all unit tests and tests from the book on DrPython in addition to CPython.

Adequacy Criterion

When all tests from "Introduction to Media Computation" have been passed, then beta testing with the customer will begin. After a 2-week period, beta testing will end and all reports of bugs will be repaired. Once all bugs are repaired, we will run the tests again to make sure no functionality has been broken. Mark Guzdial will then accept the product once all tests are passed in his presence.

Planned Test Cases

Test #	Purpose	Action and Input	Expected Result	Actual Result	P/F	Notes

FUNCTIONAL					
1	Test the MakeColor,	Use the ColorTest.py	Data should match everything		Print statements tell
	distance, newColor,	file. When run it	written on the screen	2	you exactly what
	makeLighter, makeDarker	will perform actions		S	should be printed
	functions.	using the Media.py		1	form the result. If
		and output results to		t	hey match, you
		screen		1	nave passed.
2	MakePicture,	Flower1.jpg and	The two flowers should be		See p. 96 of the
	getMediaPath, getHeight,	Flower2.jpg should	combined into 1 picture, they will	1	book for expected
	getPixel, setColor	be in the directory	be side by side	1	result
		where media.py is			
		loaded, use			
		createCollage.py			
3	GetRed, setRed	Barbara.jpg should	Red levels should be reduced by]	Pay close attention
		be used and the	1/2.	t	to red levels
		decreaseRed.py			
4	AddText, addLine,	Use 640x480.jpg	A piece of text, a line, and		
	addRectFilled, addRect		rectangles on the screen.		
5	GetPixels, setColor	Use the Barbara.jpg	This will convert the color image]	If you test on
		file and the	into a grey scale image	1	another picture, use
		greyscale.py file.			a color one.
6	PickAFile, various setters	Make sure a jpeg	Output should match the printed	, r	The output will
	and getters	image is available	text.	1	follow a print
				5	statement. The
					print statement has
				1	the expected result.
7	MakeLighter "for" loop	Use the Barbara.jpg	Picture will be lighter by 1/3 of its		
		file and the "lighten	current shade		
		loops.py file			
8	Tests using math	Use the daisies.jpg	New picture will be an outline of		Look at the old and
	functions on pixel values	tile and the	the old.	1	the new picture
	· · · · · · · · · · · · · · · · · · ·	lineDetect.py file.		t	together
9	Using "range" with pixel	Use the Barbara.jpg	Draws a grid on the pictuere that		

	values	file and the line.py	is 5 pixels by 5 pixels.	
10	Tests math functions on getPixel	Use the barabara.jpg file and the makeNegative.py file	This will make the negative of the picture.	
11	Tests conditional statements with pixels.	Use the students-on- tour.jpg and the posterize.py	The image will be posterized	This normalizes the colors.
12	Tests deleting and adding pixels onto a canvas	Use the barabara.jpg file and the scaleDown.py file	This will only capture Barbara's head and scale it by 2/3.	
13	GetSampleValueAt, getLength, makeSound	Use the preamble.wav file and the backwards.py file	This will reverse the sound.	When playing, it will sound garbled, because it is backwards.
14	BlockingPlay	Use the preamble.wav file	You will ONLY hear the preamble once, but the system tries to play it 3 times at once	There should only be one copy playing at a time
15	SetSampleValueAt	Use the preamble.wav file and the inc dec.py file	This will be loud until the middle of the sound, then it will get quieter	
16	Increasing the volume	Use the preamble wav and the IncreaseVol.py file	This will increase the intensity of the file	Remember that an increase in intensity does not increase the volume by the same amount
17	GetSampleObjectAt	Use the preamble.wav and the mirror.py file	This will mirror the sound file	
		Performance	e Tests (Non functional)	
1	SetRed, setBlue,	Use the Barbara.jpg	This will blur the image, it use to	If it is functioning

	setGreen, and set Color	file and the blur.py file	take a very long time on JES, make sure to record the time		correctly, then be sure to record the time.
2	Mirror the image	Use the santa.jpg file and the mirror.py file	This will mirror the santa image halfway through the picture.		The picture will be vertically mirrored; horizontal uses the same functions.
3	Rotate the image 90 degrees	Use the barabara.jpg file and the rorate.py file	This will rotate the image 90 degrees counterclockwise		Use to take a long time on JES
4	Mirror another image	Use the Temple.jpg and the mirror.py file	This will mirror an image and make it look like you have repaired the damage to it		Look at results on p. 86 of the book
5	Normalize a sound	Use the bassoon- c4.wav file and the normalize.py file	This will take out the peaks and valleys and make it sound more flat		
6	Combine 2 sounds	Use guzdial.wav and is.wav with splice.py file	This will combine the 2 wav files		Should say "Guzdial is"
			Error testing	· · · ·	
1	Access pixels out of bounds	Use the Barbara.jpg file and try to access a pixel past the end of the file	Gives error to the using saying "Pixel value out of bounds"		
2	Accessing samples out of bounds	Use the "is.wav" file and try to access a sample past the last index	Should display message saying "Sample value out of bounds"		
3	Try to open a picture that does not exist	Try to open a jpeg file that doesn't exist.	Error displayed will say "Image does not exist"		
4	Try to open a sound that doesn't exist	Open an image file that does not exist	Error displayed saying "File does not exist"		

	Usability tests					
1	Beta Testing	Since the program	Survey will ask to rank on likert		These questions	
		will be extensively	scale: ease of install, performance,		will just help us	
		beta tested, we will	would they recommend it, would		know if people like	
		send a survey to each	they use it for their students.		the new Media.py,	
		tester.			results will be given	
					to the customer	
2	Customer use	We will have the	This is to be performed at the			
		customer use the	beginning of the beta testing, so			
		software and have a	we can learn what the customer			
		short Q&A session	would like to be added, change, or			
		with him	get rid of.			

• It should be noted that the Media.py system is already in use by the CS1315 classes and are copying its functionality; therefore the current students and the professor have already established usability.

• Also note that performance benchmarks will be taken on every functional test as well as every performance test and will be measured in seconds and tenths of seconds.

Legend

Test #	Test Case Number / Identifier
Purpose	Reason that the test case is being run. For black-box tests, this is the requirement that the test cases are validating (number / identifier). For white-box tests, this is the code segment that is being exercised.
Action and Input	Scripted set of steps to perform test along with input data to use (or a pointer to a test case file)
Expected Result	Result expected when action is complete; output data values
Actual Result	What was actually seen. Failed cases should be marked with the date and time of the failure, and the associated test track number. When the failed cases is fixed, the date and time of the retest should be noted.
P/F	Pass / Fail indicator. Checkmark = Pass. "F" = Fail
Notes	Additional notes, error messages, or other information about the test.