
Project Name Test Cases 

11/23/05  1 

Project Name  

Test Plan 
 

 

 
 

Table of Contents 
 

 

History of Changes........................................................................................................................ 1 

Version ........................................................................................................................................... 1 

Date................................................................................................................................................. 1 

Change ........................................................................................................................................... 1 

First Draft ...................................................................................................................................... 1 

Related Documents ....................................................................................................................... 2 
Test Team.................................................................................................................................... 2 

Testing Strategy .......................................................................................................................... 2 

Items Not Covered by These Test Cases .................................................................................... 3 

Bug Tracking .............................................................................................................................. 3 

Quality Control ........................................................................................................................... 3 

Adequacy Criterion..................................................................................................................... 3 

Planned Test Cases ....................................................................................................................... 4 
Legend......................................................................................................................................... 8 

 

 

History of Changes 

 

Version  Date Change 

First Draft 10/10/2005  

Second Draft 10/11/2005 Types of testing 

Third Draft 10/18/2005 Added Test 

Final Draft 11/22/2005 Revised procedure, added tests 



Project Name Test Cases 

11/23/05  2 

Related Documents 
 

Requirements Document:  http://swiki.cc.gatech.edu:8080/cs4911b-fl05/143 

 

Test Team 
 

Testing Manager:  Dustin Roberts 

Sound Tester:  John Burton 

Image Tester:  Andrew Nagel 

GUI Tester:  Sam Gawthrop 

 

Testing Strategy 
 

Initially, all tests will be written in a black box fashion.  The tests will include unit tests from a 

previous semester’s team, and all sample code in “Introduction to Media Computation” by Mark 

Guzdial.  If the software can run all of the sample code in this book, it has met the acceptance 

criteria.  When major bugs are discovered, we will then write specific tests for that function.  For 

these specific tests, we will use white box testing, so that every line of code can be run in those 

functions. 

 

A major bug is one that takes more than 30 minutes to repair, or that has to employ a work 

around in order to work with currently available libraries. 

 

In addition to functionality testing, we will also test performance.  In order to test performance, 

we will use the “Time” function in Python to record how long a program takes to run.  We will 

use the sample code from Mark Guzdial’s book to get the benchmarks.  First, we will run the 

code on JES and record the times.  These tests will be run on both Windows and Mac.  We will 

then run the code using the new Media.py and record those times.  These tests will also be run on 

both Windows and Mac.  All results will be shown graphically using a bar chart. 

 

Testing will be done in a “Top-down” fashion.  This is inherently true because the examples in 

the book start out doing very broad tasks, which use large portions of the library, and slowly 

dwindle down into the specific function. 

 

Dustin Roberts is responsible for writing all of the initial tests.  This does not mean that each 

individual will not write tests; in fact they are required to write a test if they discover a bug, or 

are unsure if something is running correctly.  Dustin Roberts is responsible for getting with each 

programmer and running tests that pertain to their code.  Team members may run the tests on 

their code alone, but their results are not certified as correct until Dustin Roberts has run all the 

tests with them.  Once all tests have been run once, the programmer will make necessary repairs, 

and write extra tests for any major bug.  The programmer will then contact Dustin Roberts, and 

they will meet for another test run.  This will occur until all tests are passed satisfactory with 

Dustin Roberts present. 

 



Project Name Test Cases 

11/23/05  3 

 

 

Items Not Covered by These Test Cases   
 

PyGames will not be tested by the test cases.  This software is a third party library, that is 

assumed to have already been tested.   

CPython will not be tested because it is the virtual machine, which will run our code, and it is 

also assumed to have already been tested by its developers.   

WxWindows will not be tested by our code either, because it too is a third party library and is 

assumed to be tested by its developers. 

 

 

 

Bug Tracking 
 

An Excel spreadsheet will be used to track bugs.  It will contain the following information:  

description of the bug, person who discovered it, when it was discovered, who is responsible for 

it, how it was fixed, and when it was fixed.  Each teammate is responsible for recording bugs in 

the Excel spreadsheet when they discover them.  Andrew Nagel is responsible for logging all 

bugs reported by beta testers. 

 

Quality Control 
 

All team members, prior to its submittal, will review the test plan.  The advisor will also review 

the test plan and add anything he thinks would be beneficial to the team.   

 

The customer decided that he would like to test the software on DrPython, since a class in 

Australia will be using DrPython for their students.  This requires us to run all unit tests and tests 

from the book on DrPython in addition to CPython. 

 

Adequacy Criterion 
 

When all tests from “Introduction to Media Computation” have been passed, then beta testing 

with the customer will begin.  After a 2-week period, beta testing will end and all reports of bugs 

will be repaired.  Once all bugs are repaired, we will run the tests again to make sure no 

functionality has been broken.  Mark Guzdial will then accept the product once all tests are 

passed in his presence.



Project Name Test Cases 

11/23/05  4 

Planned Test Cases 

 

Test # Purpose Action and Input Expected Result Actual 

Result 

P/F Notes 



Project Name Test Cases 

11/23/05  5 

FUNCTIONAL 

1 Test the MakeColor, 

distance, newColor, 

makeLighter, makeDarker 

functions. 

Use the ColorTest.py 

file.  When run it 

will perform actions 

using the Media.py 

and output results to 

screen 

Data should match everything 

written on the screen 

  Print statements tell 

you exactly what 

should be printed 

form the result.  If 

they match, you 

have passed. 

2 MakePicture, 

getMediaPath, getHeight, 

getPixel, setColor 

Flower1.jpg and 

Flower2.jpg should 

be in the directory 

where media.py is 

loaded, use 

createCollage.py 

The two flowers should be 

combined into 1 picture, they will 

be side by side 

  See p. 96 of the 

book for expected 

result 

3 GetRed, setRed Barbara.jpg should 

be used and the 

decreaseRed.py 

Red levels should be reduced by 

½.   

  Pay close attention 

to red levels 

4 AddText, addLine, 

addRectFilled, addRect 

Use 640x480.jpg A piece of text, a line, and 

rectangles on the screen. 

   

5 GetPixels, setColor Use the Barbara.jpg 

file and the 

greyscale.py file. 

This will convert the color image 

into a grey scale image 

  If you test on 

another picture, use 

a color one. 

6 PickAFile, various setters 

and getters 

Make sure a jpeg 

image is available 

Output should match the printed 

text.   

  The output will 

follow a print 

statement.  The 

print statement has 

the expected result. 

7 MakeLighter “for” loop Use the Barbara.jpg 

file and the “lighten 

loops.py” file 

Picture will be lighter by 1/3 of its 

current shade 

   

8 Tests using math 

functions on pixel values 

Use the daisies.jpg 

file and the 

lineDetect.py file.  

New picture will be an outline of 

the old. 

  Look at the old and 

the new picture 

together 

9 Using “range” with pixel Use the Barbara.jpg Draws a grid on the pictuere that    



Project Name Test Cases 

11/23/05  6 

values file and the line.py 

file 

is 5 pixels by 5 pixels. 

10 Tests math functions on 

getPixel 

Use the barabara.jpg 

file and the 

makeNegative.py 

file 

This will make the negative of the 

picture. 

   

11 Tests conditional 

statements with pixels.   

Use the students-on-

tour.jpg and the 

posterize.py 

The image will be posterized   This normalizes the 

colors. 

12 Tests deleting and adding 

pixels onto a canvas 

Use the barabara.jpg 

file and the 

scaleDown.py file 

This will only capture Barbara’s 

head and scale it by 2/3.   

   

13 GetSampleValueAt, 

getLength, makeSound 

Use the 

preamble.wav file 

and the 

backwards.py file 

This will reverse the sound.   When playing, it 

will sound garbled, 

because it is 

backwards. 

14 BlockingPlay Use the 

preamble.wav file 

You will ONLY hear the 

preamble once, but the system 

tries to play it 3 times at once 

  There should only 

be one copy playing 

at a time 

15 SetSampleValueAt Use the 

preamble.wav file 

and the inc dec.py 

file 

This will be loud until the middle 

of the sound, then it will get 

quieter 

   

16 Increasing the volume Use the preamble 

wav and the 

IncreaseVol.py file 

This will increase the intensity of 

the file 

  Remember that an 

increase in intensity 

does not increase 

the volume by the 

same amount 

17 GetSampleObjectAt Use the 

preamble.wav and 

the mirror.py file 

This will mirror the sound file    

Performance Tests (Non functional) 

1 SetRed, setBlue, Use the Barbara.jpg This will blur the image, it use to   If it is functioning 



Project Name Test Cases 

11/23/05  7 

setGreen, and set Color file and the blur.py 

file 

take a very long time on JES, 

make sure to record the time 

correctly, then be 

sure to record the 

time. 

2 Mirror the image Use the santa.jpg file 

and the mirror.py file 

This will mirror the santa image 

halfway through the picture. 

  The picture will be 

vertically mirrored; 

horizontal uses the 

same functions. 

3 Rotate the image 90 

degrees 

Use the barabara.jpg 

file and the rorate.py 

file 

This will rotate the image 90 

degrees counterclockwise 

  Use to take a long 

time on JES 

4 Mirror another image Use the Temple.jpg 

and the mirror.py file 

This will mirror an image and 

make it look like you have 

repaired the damage to it 

  Look at results on 

p. 86 of the book 

5 Normalize a sound Use the bassoon-

c4.wav file and the 

normalize.py file 

This will take out the peaks and 

valleys and make it sound more 

flat 

   

6 Combine 2 sounds Use guzdial.wav and 

is.wav with splice.py 

file 

This will combine the 2 wav files   Should say 

“Guzdial is” 

Error testing 

1 Access pixels out of 

bounds 

Use the Barbara.jpg 

file and try to access 

a pixel past the end 

of the file 

Gives error to the using saying 

“Pixel value out of bounds” 

   

2 Accessing samples out of 

bounds 

Use the “is.wav” file 

and try to access a 

sample past the last 

index 

Should display message saying 

“Sample value out of bounds” 

   

3 Try to open a picture that 

does not exist 

Try to open a jpeg 

file that doesn’t 

exist. 

Error displayed will say “Image 

does not exist” 

   

4 Try to open a sound that 

doesn’t exist 

Open an image file 

that does not exist 

Error displayed saying “File does 

not exist” 

   



Project Name Test Cases 

11/23/05  8 

Usability tests 

1 Beta Testing Since the program 

will be extensively 

beta tested, we will 

send a survey to each 

tester. 

Survey will ask to rank on likert 

scale: ease of install, performance, 

would they recommend it, would 

they use it for their students. 

  These questions 

will just help us 

know if people like 

the new Media.py, 

results will be given 

to the customer 

2 Customer use We will have the 

customer use the 

software and have a 

short Q&A session 

with him 

This is to be performed at the 

beginning of the beta testing, so 

we can learn what the customer 

would like to be added, change, or 

get rid of. 

   

 

• It should be noted that the Media.py system is already in use by the CS1315 classes and are copying its functionality; therefore 

the current students and the professor have already established usability. 

• Also note that performance benchmarks will be taken on every functional test as well as every performance test and will be 

measured in seconds and tenths of seconds. 

 

Legend 
 

Test #   Test Case Number / Identifier 

Purpose  Reason that the test case is being run. For black-box tests, this is the 

                                    requirement that the test cases are validating  (number / identifier). For  

                                    white-box tests, this is the code segment that is being exercised. 

Action and Input Scripted set of steps to perform test along with input data to use (or a 

                                    pointer to a test case file) 

Expected Result Result expected when action is complete; output data values 

Actual Result  What was actually seen. Failed cases should be marked with the date and 

                                     time of the failure, and the associated test track number. When the failed  

                                     cases is fixed, the date and time of the retest should be noted. 

P / F   Pass / Fail indicator. Checkmark = Pass. “F” = Fail 

Notes   Additional notes, error messages, or other information about the test. 

 


